Relative Asymptotics of Orthogonal Polynomials for Perturbed Measures
نویسندگان
چکیده
We survey and present some new results that are related to the behavior of orthogonal polynomials in the plane under small perturbations of the measure of orthogonality. More precisely, we introduce the notion of a polynomially small (PS) perturbation of a measure. Namely, if μ0 ≥ μ1 and {pn(μj , z)}n=0, j = 0, 1, are the associated orthonormal polynomial sequences, then μ0 a PS perturbation of μ1 if ‖pn(μ1, ·)‖L2(μ0−μ1) → 0, as n → ∞. In such a case we establish relative asymptotic results for the two sequences of orthonormal polynomials. We also provide results dealing with the behaviour of the zeros of PS perturbations of area orthogonal (Bergman) polynomials.
منابع مشابه
Ratio and relative asymptotics of polynomials orthogonal with respect to varying Denisov-type measures
Let be a finite positive Borel measure with compact support consisting of an interval [c, d] ⊂ R plus a set of isolated points in R\[c, d], such that ′> 0 almost everywhere on [c, d]. Let {w2n}, n ∈ Z+, be a sequence of polynomials, degw2n 2n, with real coefficients whose zeros lie outside the smallest interval containing the support of . We prove ratio and relative asymptotics of sequences of ...
متن کاملAsymptotics of Orthogonal Polynomials via the Koosis Theorem
The main aim of this short paper is to advertize the Koosis theorem in the mathematical community, especially among those who study orthogonal polynomials. We (try to) do this by proving a new theorem about asymptotics of orthogonal polynomials for which the Koosis theorem seems to be the most natural tool. Namely, we consider the case when a Szegö measure on the unit circumference is perturbed...
متن کاملRemarks on Relative Asymptotics for General Orthogonal Polynomials
Using a nonlinear integral characterization of orthogonal polynomials in the complex plane, we provide a simple method for deducing a weak form of relative asymptotics exterior to the convex hull of the common support of the generating measures. The simplicity of the approach makes it a natural precursor for the presentation of Szegő theory. Dedicated to Guillermo López Lagomasino on the occasi...
متن کاملOn the Asymptotics of Polynomials Orthogonal on a System of Curves with Respect to a Measure with Discrete Part
Consider an absolutely continuous measure on a system of Jordan arcs and (closed) curves in the complex plane, assuming that this measure satisfies the Szegő condition on its support and that the support of the measure is the boundary of some (multiply connected) domain Ω containing infinity. Adding to the measure a finite number of discrete masses lying in Ω (off the support of the measure), w...
متن کاملOn asymptotic properties of Freud-Sobolev orthogonal polynomials
In this paper we consider a Sobolev inner product (f, g)S = ∫ fgdμ+ λ ∫ f ′g′dμ (1) and we characterize the measures μ for which there exists an algebraic relation between the polynomials, {Pn}, orthogonal with respect to the measure μ and the polynomials, {Qn}, orthogonal with respect to (1), such that the number of involved terms does not depend on the degree of the polynomials. Thus, we reac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016